Real-Time Image Classification and Transformation
Apps on iOS by “Chainer2MPSNNGraph”’

Yuki Izumi Daichi Horita Ryosuke Tanno Keiji Yanai
Department of Informatics,
The University of Electro-Communications, Tokyo

1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585 JAPAN
{izumi-y,horita-d,tanno-t,yanai}Omm.inf.uec.ac. jp

Abstract

We propose a DNN code generator, “Chainer2MPSNNGraph”, which converts
DNN models trained by Chainer [1] into Swift codes utilizing MPSNNGraph
APIs. Note that MPSNNGraph APl is a part of the iOS Metal Performance Shader
library which is a library to utilize a GPU inside an iPhone. That is, the proposed
tool enables us to develop GPU-powered DNN applications running on iPhone
easily. In addition to introduction of “Chainer2MPSNNGraph”, we also show
some real-time image recognition and transformation applications implemented
with “Chainer2MPSNNGraph”: image classification with AlexNet and VGG16,
multi-style transfer and food translation.

1 Introduction

DNN (Deep Neural Network) have made Al applications advance greatly. For real-time or inter-
active mobile applications, on-device execution of DNN is really needed. To do that, some recent
smartphones such as iPhone X have GPUs for deployment of DNN. In case of i0S, Apple provides
an API library for GPU-powered computation on iPhone, Metal Performance Shader (MPS). The
MPS in i0S 11 or later contains Neural Network APIs which is called “MPSNNGraph” APIs. They
enables has GPU-powered forward computation of basic neural network layers such as a fully con-
nected (FC) layer, a convolutional (CONYV) layer, batch normalization and ReLU activation function.

To utilize a GPU inside iPhone, CoreML API and Core ML tools are officially provided by Ap-
ple. CoreML API is a high level library for machine learning which is built upon both low-level
GPU libraries, MPS, and low-level CPU-based computation library, Accelerate. The Core ML tools
translate DNN models trained by Keras or Caffe into CoreML format models, and the CoreML for-
mat models can be deployed using CoreML API. Although CoreML can execute trained models on
iPhone GPU easily, it is black-boxed and not open-sourced. For research purpose, this characteristics
is unwelcome for exploring efficient on-device deployments of DNN models.

Then, in this paper, we propose a DNN code generator, “Chainer2MPSNNGraph”, which converts
DNN models trained by Chainer into Swift codes utilizing MPSNNGraph APIs. The generated
code can be modified and optimized by hand, which is totally different from black-boxed CoreML.
In addition, DNN models are represented in Swift codes after code generation, and the generated
codes are compiled by the Swift compiler into the executable codes on iPhone. Therefore, it has
possibility to run DNN models more efficiently than CoreML. We examine this point with image
classification networks in the experiments. In addition, we show some real-time image recognition
and transformation applications implemented with “Chainer2MPSNNGraph”: image classification
with AlexNet and VGG16, multi-style transfer and food translation.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

2 Related Work

Some DNN frameworks provide extension libraries for smartphone deployment such as Caffe
10S/Android, Caffe2, PyTorch and Tensorflow Lite. Except Tensorflow Lite, all the frameworks
employ the library for fast computation of DNN networks, NNPACK !. NNPACK supports multi-
threading and ARM SIMD (Neon) instructions for efficient computation of generic matrix multipli-
cation (GEMM).

Tensorflow Lite uses the Android Neural Network (ANN) API which is available at Android OS 8.1
or later. Although the default implementation of ANNs is CPU-based, some Android phone vendor
implements ANN as being GPU-based. For example, Qualcom Snapdragon 845 officially supports
ANN.

As some other works on on-device DNN deployment, “Chainer2C with Accelerate” [2] was pro-
posed. The authors proposed a C code generator of DNN models trained with Chainer, and achieved
26ms at fastest for one image recognition by Network-in-Network on iPhone7plus. They employed
the CPU-based Accelerate library in iOS and multi-threading for efficient computation of DNNs.

In this paper, we propose a DNN code generator which converts CNN models trained with Chainer
into a Swift code employing a GPU-based computation library. To do that, we follow [2] and
replace C with Swift as a target language and CPU-based iOS Accelerate with GPU-based iOS MPS
NNGraph as a computation library.

3 Method

“Chainer2MPSNNGraph” converts the model trained with Chainer [1] into a Swift code and a pa-
rameter file.

Chainer creates a model graph dynamically at the time of forwarding computation, so that we
read the model trained by Chainer and feed-forward the model once with the Chainer module, and
then the proposed library, “Chainer2MPSNNGraph”, which is implemented as an extension of the
Chainer module written in Python, analyzes the model graph and generates a code and a parameter
file for the MPSNNGraph API. Figure 1 shows a work flow for developing of a DNN iOS App
from a DNN Chainer code with “Chainer2MPSNNGraph”. Note that a GUI code are needed to be
prepared separately, since the proposed library generates a code for only a DNN engine.

Para-
meter
Trained Chainer2 .bin
Chainer)| Chainer |[mmp| MPSNN-
model Graph

DNN
Chainer
code

Swift ios
compiler App
with DNN

GUI code
(by hand)
swift

Figure 1: A work flow for developing of a DNN iOS App with “Chainer2MPSNNGraph”.

4 Applications

In this section, we show some example apps developed using “Chainer2MPSNNGraph” including
image classification apps and two image translation apps.

"https://github.com/Maratyszcza/NNPACK

let convl = MPSCNNConvolutionNode(source: conv@l.resultlImage,
weights: DataSource("convl", 9, 9, 3, 32, 1, useBias: true))
let relul = MPSCNNNeuronReLUNode(source: convl.resultImage)
let bnl = MPSCNNBatchNormalizationNode(source: relul.resultImage,
dataSource: DataSource2("bni", 32))
let conv2 = MPSCNNConvolutionNode(source: bnl.resultImage,
weights: DataSource("conv2", 4, 4, 32, 64, 2, useBias: true))
let relu2 = MPSCNNNeuronReLUNode(source: conv2.resultImage)
let bn2 = MPSCNNBatchNormalizationNode(source: relu2.resultImage,
dataSource: DataSource2("bn2", 64))
let conv3 = MPSCNNConvolutionNode(source: bn2.resultImage,
weights: DataSource("conv3d", 4, 4, 64, 128, 2, useBias: true))
let relu3 = MPSCNNNeuronReLUNode(source: conv3.resultImage)
let bn3 = MPSCNNBatchNormalizationNode(source: relu3.resultImage,
dataSource: DataSource2("bn3", 128))

Figure 2: An example of a generated Swift code which represents the DNN model.

4.1 Classification

We implemented image classification apps containing AlexNet and VGG16 as image classification
engines.

First, we compared the GPU-based AlexNet app implemented with the proposed generator with
the CPU-based AlexNet implemented with “Chainer2C” [2] regarding the processing time for one
image. Table 1 shows the processing time at iPad Pro 9.7inch. The GPU-based app by the proposed
generator was 3.7 times as fast as the CPU-based app by Chainer2C.

Next, for VGG-16, we compared the proposed one with CoreML and the MPS code ? implemented
by hand where only MPS API was used and no MPS NNGraph API was used. Table 2 shows the
processing time at iPhone 8 Plus by three implementation. The proposed one achieved the best
speed, 109.0ms, while CoreML and MPS were less, which shows the efficiency of MPSNNGraph
API and compiling of the generated Swift code into a native code.

Table 1: Processing time on iPhone Table 2: Processing time on iPhone
8 Plus for one image classification by 8 Plus for one image classification by

AlexNet. VGG16. All the methods employ a
- GPU on iPhone.
| code generator | time (ms) |
Chainer2C (CPU) | 1349 |_method | time (ms) |
Proposed (GPU) 36.4 CoreML 144.9
MPS 155.2

Proposed 109.0

4.2 TImage Translation

As the other DNN applications than image classification, we implemented multi-style transfer net-
work [3, 4], and food image transformation network [5].

4.2.1 Multi-Style Transfer

To implement a multi-style transfer app, we used the network proposed by Yanai et al. [3, 4] which
is an extension of the Conv-5 ResBlock-Deconv network proposed by Johnson et al. [6] by adding a
conditional input for mixing the style weights.

We compared the app by the proposed method with the app by Chainer2C and CoreML. As a result,
the app implemented with “Chainer2MPSNNGraph” was the fasted for stylization of one 256x256
image as shown as Table 3. Figure 3 shows the screenshot of the implemented app, “DeepStyle-
Cam”.

*https://github.com/hollance/VGGNet-Metal

Table 3: Processing time on iPhone 8
Plus for one image stylization. (fNote
that the implementation for CoreML
was not multiple style transfer but single
style transfer [6]. The time for CoreML
is expected to increase a little in case of
multiple style.)

1

.0 — _{ FElapsed:94.383..

| method | time (ms) |
Chainer2C (CPU) 138.6 Figure 3: An screenshot of “DeepStyleCam”
CoreML (GPU) { 101.0 which is a real-time multi-style transfer app run-
Proposed (GPU) 96.3 ning on a iPhone GPU. A user can set the weights

of the 13 pre-trained styles. Mixing multiple
styles is possible.

4.2.2 Food Image Transformation

We also implemented the food image transformation network [5] was based on StarGAN [7]. The
network of the transformation part is the Conv-7 ResBlock-Deconv network which is based on the
network proposed by Johnson et al. [6]. Figure 4 shows examples of food image transformation
which can convert a food photo into ten kinds of the pre-trained food categories. Figure 5 shows the
screenshot of the implemented app, “MagicalRiceBowl”. Note that one-time transformation for a
256x256 image took 115 ms, which corresponded to 9fps.

Fried Hiyashi Meet
Input Curry Rice Gyudon Chuka Supa _ Rame Rice Soba Unagi Yakisoba

z

N
’ Elapsed: 115.3058 msec
- 4

Figure 5: An screenshot of “Magical-
RiceBow!l” which is a real-time food
image transformation app running on a
iPhone GPU.

Figure 4: Examples of food image transformation.

5 Conclusions

We proposed “Chainer2MPSNNGraph” which is a code generator of MPSNNGraph API of i0OS
Metal Performance Shader. By using the proposed code generator, we can develop DNN apps which
utilize a GPU on iPhone easily. In the experiments, we confirmed that AlexNet could runs on GPU
3.7 times faster than CPU computation, and VGG16 could run faster than CoreML. In addition,
we implemented iOS apps on multi-style transfer and food image transformation utilizing a iPhone
GPU using “Chainer2MPSNNGraph”. We plan to demo both apps at the venue if accepted.

Note that “Chainer2MPSNNGraph” will be released at GitHub soon. In addition, we are developing
“ONNX2MPSNNGraph” currently, which converts DNN models represented in the Open Neural
Network Exchange (ONNX) format into Swift codes utilizing the MPSNNGraph APIs.

References

[1] S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer: a next-generation open source framework
for deep learning. In Proc. of NIPS Workshop on Machine Learning Systems (LearningSys),
2015.

[2] K. Yanai, R. Tanno, and K. Okamoto. Efficient mobile implementation of a cnn-based object
recognition system. In Proc. of ACM International Conference Multimedia, 2016.

[3] K. Yanai. Unseen style transfer based on a conditional fast style transfer network. In Proc. of
International Conference on Learning Representation Workshop Track (ICLR WS), 2017.

[4] K. Yanai and R. Tanno. Conditional fast style transfer network. In Proc. of ACM International
Conference on Multimedia Retrieval (ICMR), 2017.

[5] D. Horita, R. Tanno, W. Shimoda, and K. Yanai. Food category transfer with conditional cycle
gan and a large-scale food image dataset. In Proc. of International Workshop on Multimedia
Assisted Dietary Management (MADIMA), 2018.

[6] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. In Proc. of European Conference on Computer Vision, 2016.

[71 Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. StarGAN: Unified generative
adversarial networks for multi-domain image-to-image translation. In Proc. of IEEE Computer
Vision and Pattern Recognition, 2018.

