
Continual Learning 
for an Encoder-Decoder CNN Using “Piggyback”

Asato Matsumoto         Keiji Yanai

The University of Electro-Communications, Tokyo, Japan

CL-2018

Objective

Related work

• Simultaneous training of multiple tasks
(1) Single encoder & task-specific decoders

e.g. UberNet [Ikkinos CVPR2017]

(2) Multiple inputs & multiple outputs 
e.g. “One Model To Learn Them All” [Kaiser et al. arXiv 2017]

• Continual learning : major approarches
for overcoming “catastrophic forgetting”

Experiments

Continual learning of an Encoder-Decoder network 
for heterogeneous image-to-image tasks 
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• Apply “Piggyback” to 3 kinds of image-to-image tasks. 
Baseline 1: independent models (scratch)
Baseline 2: copying models and incremental fine-tuning (fine-tune)
Baseline 3: shared decoder and task-specific decoder (decoder)

Single network 

(1) For the first task, train a network as a “backbone network.”
(2) For the second task or more, fine-tune the network, and

obtain the task-specific binary mask by thresholding.

(3) At evaluation time, calculate the task-specific weights by elementwise masking.  

Task2: segmentation results

• The ratio of Zero’ed out weights 

Weight selection approach: “Piggyback”

Colorization
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(1) Rehearsal [Hetherington et al. 1989] 
• Keep (sampled) old training samples and use them for new training as well

(2) Distillation (Learning without Forgetting (LfW))  [Li and Hoiem 2016]
• Reproduce training labels of old tasks with trained model and use them for new training 

(3) Elastic Weight Consolidation (EWC) [Kirkpatrick et al. 2016] (regularization)

• Train weights for new tasks according to un-importantness of weights 
(4) Progressive Neural Networks  [Ruse et al. 2016]

• Fix trained weights for the previous tasks, and extend the net and train extended weights.

• “PackNet” [Mallya et al. CVPR2018] : a pruning version of progressive network 
(5)  Weight selection: “Piggyback” [Mallya et al. ECCV2018]

• Select the weights of the fixed base network with task-specific binary masks 

Only intermediate parts are shared.

(4) (5) bring “no catastrophic forgetting” with small additional task-specific weights . 

In this work, we adopt “Piggyback” (5) as a basic approach.

[Mallya et al. ECCV2018]

Encoder-Decoder network : U-net
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• Feature works
• Reducing the size of binary masks
• Combining pruning
• Analyzing the trained masks →  binary masks are “task features” ??

No “catastrophic forgetting” happen 
with small additional binary masks 
and task-specific final layers.
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• 5 tasks to be learned continuously
Task1 : Semantic segmentation with MSCOCO  
Task2 : Semantic segmentation with PASCAL VOC 2012
Task3 : Colorization for gray-scaled MSCOCO images
Task4 : Fast Style Transfer with “Gogh’s Starry Night” 
Task4’: Fast Style Transfer with “Munk’s Scream”

• Experimental Results 
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Task3: colorization results

Task4: Gogh’s style transfer results Task4’: Munk’s style transfer results 
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The tendency is totally 
different from VGG16 
with classification tasks.

ImageNet  -> WikiArt
(VGG16)

[Mallya et al. 2016]
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“Piggyback” worked well for Encoder-Decoder net !


