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Abstract. We usually predict how objects will move in the near future
in our daily lives. However, how do we predict? In this paper, to address
this problem, we propose a GAN-based network to predict the near future
for fluid object domains such as cloud and beach scenes. Our model takes
one frame and predict future frames. Inspired by the self-attention mech-
anism [25], we propose introducing the spatial self-attention mechanism
into the model. The self-attention mechanism calculates the reaction at a
certain position as a weighted sum of the features at all positions, which
enables us to learn the model efficiently in one-stage learning. In the
experiment, we show that our model is comparable compared with the
state-of-the-art method which performs two-stage learning.
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1 Introduction

Human beings predict how objects will move in the near future in daily life.
However, how do we predict? Generally, we have gained a visual experience
by looking at the relationships between objects interacting in various scenes
of life. Based on the wealth of experience and knowledge gained through the
experience, we predict the future in a few seconds later. In addition, we utilize
the experience and knowledge when we encounter new scenes, and predict future
movements. Therefore, predicting future movements plays an important role in
intelligent systems and automatic systems as it is necessary to decide and plan
how objects will move in the future. To achieve this, we need to train a model
that understands how scenes change and how objects move.

Recently, in the field of computer vision, there are many studies using images
and videos. In particular, solving the video problems is beneficial for various
applications, such as video prediction [5,16], action recognition [12,27], action
localization [7,22], video understanding [23,3], and video captioning [14,18]. In
unsupervised learning of images, Generative Adversarial Nets (GANs) [1,6] show
excellent results, and success in producing high resolution and quality images
such as people’s faces [13,20]. In contrast, in unsupervised learning of video,
there are still difficult problems compared to the field of image generation. If
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Fig. 1. Some example results of cloud motions generated by our proposed model
trained with the cloud time-lapse dataset. From left to right: (a) the ground truth,
(A) our model, (B) first stage of MD-GAN [29], and (C) second stage of MD-GAN,
respectively. (B) and (C) are generated from official pre-trained models.

the model mistakenly learns the physical structure, the predicted motion may
include movement which is physically impossible. In addition, the transition
speed of scenes and movement speed of objects are also an important factor
to make videos natural. Video prediction models have to predict appropriate
speeds of objects and scenes as well as generate their appearances. Therefore,
video prediction is a challenging problem and still needs much progress. In this
paper, our goal is the future frame prediction of the video, which predicts natural
movement according with human cognition.

Regarding video generation and prediction by neural networks, the studies
started just four years ago. One of the representative works done in the early day
is VGAN [26], which is a method that can generate moving images from large-
scale unsupervised time-lapse video datasets. However, since VGAN generates
the background and foreground of the image separately, the background is fixed,
it has a problem that it can not generate the dynamic background. Therefore, it
is necessary to learn a model that can generate not only the foreground but also
the background at the same time. In addition, one of the biggest problems with
video prediction is what we should focus on for training. The variation of motions
in videos is very huge. It is unrealistic to generate many kinds of movements of
any kind of object with the current techniques. Limiting video domains is a
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reasonable way to attack this problem. Even if one frame of consecutive moving
images is given, it is difficult to set constraints to the model because there
are multiple motion options for the future scene transition. As a result, frame
prediction in unsupervised learning remains a very difficult problem. To achieve
these issues, TemporalGAN [21] uses 2D convolution in the generator to handle
temporal and spatial features separately. However, in contrast, we propose a
method using 3D convolution to consider the problem of simultaneously dealing
with temporal and spatial features.

Regarding learning methods, one-stage approaches are more efficient and
elegant than two-stage methods because models are simple in general. However,
in recent studies, two-stage training is prevailing. For example, MD-GAN [29]
achieves excellent results with two-stages learning to predict future frames. In
their method, they generate rough shapes and coarse dynamic movements in the
first stage and add detailed appearances and motions to make the final video
higher-quality in the second stage.

On the other hand, in this paper, we tackle a challenging problem with only
one-stage learning. By introducing the spatial self-attention in the one-stage
model in MD-GAN, we show that our model learns adequately in one-stage
learning and predict more realistic future frames than MD-GAN, although the
proposed model is simpler than existing two-stage methods.

Specifically, we propose the Spatial Self-Attention Generative Adversarial
Network (SSA-GAN) model for future frame prediction. Our model consists of a
generator and a discriminator. The generator has not a simple encoder-decoder
architecture but the architecture like 3D U-Net [4] to avoid generating blurred
images caused by losing content details. In addition, the generator has spacial
self-attention layers based on [25] after each 3D convolutions and deconvolutions
to preserve the spatial physical structure. Given a stationary input frame, the
generator predicts future video frames which indicate how it will move in the
future. In this way, our model keeps content details and predict as realistic
dynamic scene transition as possible. We present a few example frames which
are generated by our method and existing method. As shown in Fig. 1, the image
frames generated by our model are realistic The red arrow indicates that our
model can generate a more detailed image than the model before the introduction
of this module.

Major contributions of this paper can be summarized as follows:

1. We propose the Spatial Self-Attention Generative Adversarial Networks(SSA-
GAN) for video prediction.

2. We propose the spatial self-attention frameworks based on a self-attention
mechanism [25], which enables our model to learn in one-stage while empha-
sizing spatial correlation between time series.

3. We introduce a model that sufficiently predicts future frames with an one-
stage training and our model achieves comparable results with the state-of-
the-art method.
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2 Related Work

2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) [1,6] have achieved impressive results in
image generation [13,20] and image-to-image translation [11,34]. GANs consists
of a generator and a discriminator. The discriminator learns to distinguish the
produced fake samples from the real ones, while the generator learns to generate
fake samples which are not distinguishable from the real ones. In this paper, we
also leverage an adversarial loss to learn the mapping to generate future frames
as realistic as possible.

2.2 Video generation

There are two main approaches to the field of video generation using GAN.
One of them is to produce plausible videos by limiting video datasets to spe-
cific areas such as human faces and poses [2,30,32]. The other is a study to deal
without such constraints [21,24,26]. MoCoGAN [24] generates videos efficiently
by decomposing the latent space into content and motion subspaces. Tempo-
ralGAN [21] uses 2D convolution to generate video in the generator in order
to handle temporal and spatial features separately. In this paper, our study is
close to the latter because our model generates video frames with free movement
without such constraints.

2.3 Video prediction

Video prediction has tasks different from the video generation and it is one of the
major problems in the field of computer vision. In particular, the method of mod-
eling the domain of videos is not unified, but in the existing research, the next
frame is inferred using the recurrent neural networks like LSTM. In addition,
a well-known approach is to estimate intermediate features of dynamic motion
using optical flow and human bones [15,17]. However, our model architecture is
different from other methods because our model does not use optical flow and
the recurrent neural network. Also, our model is good at handling stationary im-
ages as our model learns without their additional information. The cutting-edge
study is MD-GAN [29], which predicts future frames from a stationary image.
However, there is a big difference between our model and MD-GAN. The first is
that [29] learns in two-stage, but our model learns in one-stage. The second is
that MD-GAN [29] leverage the Gram matrix to explicitly model dynamic mo-
tion, while our model leverages the spatial self-attention to model by the spatial
average weight. In other words, our model is added to the self-spatial attention
layer to the first stage structure of MD-GAN.

2.4 Self Attention Mechanism

Recently, there are many works that produced remarkable results using the self-
attention mechanism [25,28,31]. The self-attention module [25] calculates the



SSA-GAN: End-to-End Time-Lapse Video Generation 5

response at the position in the feature map by paying attention not only to the
surroundings of an attending point but also to all the positions in the image and
taking a weighted average of them. Non-local Neural Networks [28] proposes a
non-local operator which handles global information in spatial and temporal di-
rections using the self-attention method [25]. Similarly, our spatial self-attention
is likewise based on a self-attention mechanism. However, in the case of frame
prediction and generation, because all the frames are equally important, only
the spatial direction is used without considering the time direction.

Fig. 2. The overview architecture of our
spatial self-attention mechanism. The fea-
ture maps are shown as the shape of their
tensors. “⊗” denotes a matrix multiplica-
tion, and “⊕” denotes element-wise sum.
The softmax operations are calculated in
each column. The blue box changes the ma-
trix of channel size Cl to Ĉl and outputs it,
but the orange box outputs a matrix with
the channel size Cl.

Fig. 3. The overview architecture of our
SSA-VGAN. Blue layers indicate 3D convo-
lutional layers and 3D deconvolutional lay-
ers, and orange layers indicate the spatial
self-attention layers. The generator consists
of an architecture like 3D U-Net, preventing
skip connection from missing content. The
input image is duplicated T times from the
first frame of the ground truth.

3 Our Approach

In this section, we first describe our proposed Spatial Self-Attention GAN, a
framework to generate video samples in one-stage learning. Next, we describe
the spatial self-attention module. Finally, we describe the objective function to
learn our model.
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3.1 Spatial Self-Attention GAN

As shown in Fig. 3, SSA-GAN is a generative adversarial network composed of
the generator G and the discriminator D. G consists of 3D U-Net [4] with the
skip connection which prevents future frames from blurring and losing content
information. In addition, G has the spatial self-attention module based on self-
attention [25] followed by each convolutional and deconvolutional layers. By
using the module, it enables G to efficiently learn spatial features. D consists
of the same structure as the encoder part of the generator and has a sigmoid
function in the final layer except for the spatial self-attention layers. D takes real
and fake videos as input and tries to distinguish them. Our model learns to take
a single RGB frame and predict next T future frames as realistic as possible by
one-stage learning.

3.2 Spatial Self-Attention Module

We propose to introduce a spatial self-attention module to learn the long-range
dependence within a frame, which allows the network to first rely on the cues
in only neighboring pixels and then gradually learn to assign more weight to
areas outside the neighborhood. In other words, it enables the network to learn
simple tasks firstly and to gradually increase the complexity of the task to
get better features. Each l-th layer of the convolution and deconvolution out-
put is xl ∈ RN×Cl×Tl×Hl×Wlwhere (N,Cl,Tl,Hl,Wl) are the batch size, the
number of channels, length of the time axis, the height and the width of the
feature maps, respectively. As shown in Fig. 2, (a) the spatial self-attention
layer firstly applies the 3D convolution to the input feature xl and obtains

xl1 ∈ RN×Ĉl×Tl×Hl×Wl and (b) resizes to x̂l1 ∈ RN×(HlWl)×(ĈlTl). Next, (c)

the layer gets xl2 ∈ RN×Ĉl×Tl×Hl×Wl by (a) the same operation and (d) re-

sizes to x̂l2 ∈ RN×(ĈlTl)×(HlWl). Furthermore, (e) after calculating the ma-
trix multiplication of x̂l1 and x̂l2 , (f) softmax calculate to obtain the attention
X̂l ∈ RN×(HlWl)×(HlWl), defined as

X̂l =
exp(Xl)∑
exp(Xl)

,where Xl = xl1 ⊗ xl2 . (1)

This represents the weighted average inside the feature map. Following, (g) the
layer applies the 3D convolution to the input feature xl and obtains xl3 ∈
RN×Cl×Tl×Hl×Wl and (h) resizes to x̂l3 ∈ RN×(ClTl)×(HlWl).

Then, (i) the resized output of the layer is o ∈ RN×Cl×Tl×Hl×Wl , defined as

ol = X̂l ⊗ xl3 . (2)

Finally, (j) the layer multiplies the output ol scale parameter γ and calculates
the sum of it with the input feature map xl. Therefore, the final output is yl,
defined as

yl = γol + xl, (3)

where γ is a parameter initialized with 0. We leverage Ĉl = Cl for all experiments.
We describe the role of the parameter γ in Sec 5.4.
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3.3 Spatial Self-Attention GAN Objectives

Our goal is to predict future frames from the stationary image in the one-stage
learning model and to predict it as realistically as possible.

Adversarial Loss. In order to make the generated future frame more real-
istic, we adopt an adversarial loss

Ladv = min
G

max
D

E
Y∼Pr

[logD(Y )] +

E
X̄∼Pg

[log (1−D(X̄))], (4)

where Y is sampled from the data distribution Pr and X̄ is sampled from the
model distribution Pg implicitly defined by X̄ = G(X), X ∼ Pr. The generator
predicts a future frame X̄ from a stationary video X to fool the discriminator,
while the discriminator tries to distinguish between real and fake frames.

Content Loss. Previous approach [19] indicates that it is more beneficial
to combine traditional loss like L1 norm and L2 norm with the adversarial
loss. Although the role of the discriminator remains unchanged, the role of the
generator play a role not only to fool the discriminator but also to generate
the fake images closer to the real ones. In addition, pix2pix [11] shows that the
output images become less blurred at L1 norm than L2 norm. To ensure that
the content of the generated frames is a pattern similar to the content of the
real video, the content objective is defined as complementing the adversarial
objective,

Lcon = E
Y∼Pr,X̄∼Pg

[∥Y − X̄∥], (5)

where the generator tries to generate a frame similar to Y at the pixel level.
Full Objective. Finally, the loss objectives which optimize the generator

and the discriminator are defined as

LD = −Ladv, (6)

LG = Ladv + λconLcon, (7)

where λcon is a hyperparameter that controls the relative importance of content
loss compared to the adversarial loss. We leverage λcon = 1 for all experiments.

4 Implementation Details

As shown in Fig. 3, SSA-GAN is composed of the generator of the 3D U-Net
architecture [4] with the skip-connection and the discriminator to prevent fu-
ture frames from blurring or losing content information. The skip connection is
useful as identity mapping [9]. The generator network consists of a six convo-
lution layer, six transposed convolutions, and skip connection. In addition, the
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Table 1. The architecture of the generator.

Layer Filters Kernel Stride Padding

conv1 32 (3, 4, 4) (1, 2, 2) (1, 1, 1)
conv2 64 (4, 4, 4) (2, 2, 2) (1, 1, 1)
conv3 128 (4, 4, 4) (2, 2, 2) (1, 1, 1)
conv4 256 (4, 4, 4) (2, 2, 2) (1, 1, 1)
conv5 512 (4, 4, 4) (2, 2, 2) (1, 1, 1)
conv6 512 (2, 4, 4) (1, 1, 1) (0, 0, 0)

deconv1 512 (2, 4, 4) (1, 1, 1) (0, 0, 0)
deconv2 256 (4, 4, 4) (2, 2, 2) (1, 1, 1)
deconv3 128 (4, 4, 4) (2, 2, 2) (1, 1, 1)
deconv4 64 (4, 4, 4) (2, 2, 2) (1, 1, 1)
deconv5 32 (4, 4, 4) (2, 2, 2) (1, 1, 1)
deconv6 3 (3, 4, 4) (1, 2, 2) (1, 1, 1)

generator has the spatial self-attention module following each convolutional and
deconvolutional layers. We apply Batch Normalization [10] to all 3D convolu-
tional layers except the first and last layers, followed by Leaky ReLU and ReLU.
The output layer exploits Tanh as an activation function for the generator. We
adopt Adam as the optimizer with β1 = 0.5 and β2 = 0.9. The learning rate
is fixed at 0.0002 during learning. We perform one generator update after five
discriminator updates as in [8]. We set the batch size to 16 for all experiments.
We used the same architecture as [29] regarding the architecture of the generator
network, as shown in Table 1. The architecture of the discriminator is the same
as the convolutional parts of the generator.

5 Experiments

In this section, we first describe two data sets used in the experiment. Next, we
conduct to compare the models learned in those data sets with related studies.

Finally, we discuss the parameters gamma that manipulate our proposed
spatial self-attention in Eq 3.

5.1 Datasets

To evaluate the robustness and effectiveness of our approach, we compare our
model with other approaches using two datasets, which are the cloud time-lapse
dataset [29] and the beach dataset [26].

Cloud Time-Lapse Dataset. We leverage the time lapse video dataset 1

gathered from the Internet [29] for evaluation. The dataset includes over 5,000
time-lapse videos collected from Youtube. The videos are cut into short clips and
include those containing dynamic sky scenes such as the cloudy sky with moving
clouds, and the starry sky with moving stars. In addition, the dataset consists

1 https://sites.google.com/site/whluoimperial/mdgan

https://sites.google.com/site/whluoimperial/mdgan
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Table 2. Quantitative comparison re-
sults on the cloud time-lapse dataset.
The value range of POS is [0, 1000].

”Which is more realistic?” POS

Prefer Ours over [29] Stage I 871
Prefer Ours over [29] Stage II 526

Prefer [29] Stage I over Real 286
Prefer [29] Stage II over Real 322
Prefer Ours over Real 334

Table 3. Experiment results on
the cloud time-lapse dataset by MSE,
PSNR, and SSIM. Ours (a) and Ours
(b) are models which proposed layers
are added to the first and second stages
of MD-GAN [29], respectively.

Method MSE↓ PSNR↑ SSIM↑
[29] I 0.0280 23.14 0.5997
[29] II 0.0245 23.8529 0.6327
Ours (a) 0.0238 24.3512 0.6991
Ours (b) 0.0259 23.5224 0.6460

of 35,392 training video clips and 2,815 testing video clips each containing 32
frames. However, the original size of each frame is 3× 640× 360, and we resize
it into a square image size 3 × 128 × 128. We duplicate the first frame of the
input video 32 times to make it a static input video. We normalized the inputs
by converting the color value to [−1, 1].

Beach Dataset. We leverage the unlabeled video dataset which is released
by [26] 2, which do not contain any time-lapse video. We divide the dataset of
10% into training data and 90% into evaluation data.

5.2 Experiments on the Cloud Time-Lapse dataset

In this section, we evaluate the performance of SSA-GAN for a quantitative
evaluation. As a baseline model, we adopt MD-GAN, which is the method of
performing the highest accuracy using the cloud time-lapse dataset. In addition,
we also experiment with our model (a) to learn Stage I and our model (b) to
learn Stage II that introduced our proposed layer at each stage of MD-GAN.

To evaluate whether the predicted future frames is more natural, we compare
these models in each pair in the same way as [29]. We prepare 100 pairs of
videos according to the five cases shown in Table 2, which is selected randomly
from the evaluation dataset. We show ten subjects the pairs of generated video
and ask them ”which is more realistic?”. Then, we count the answers of their
evaluation, which means Preference Opinion Score (POS). The results generated
from our model randomly appear in either left or right side in the test to get
a more reliable evaluation. As shown in Table 2, our model achieved the better
results than other models. We demonstrate that the spatial self-attention module
generates dynamic cloud motion prediction from all spatial relationships in the
image.

Finally, for each approach, we calculate the Mean Squared Error (MSE), Peak
Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM) between
the full of evaluation datasets. As shown in Table 3, our model (a) shows better
performance than other methods.

2 http://www.cs.columbia.edu/∼vondrick/tinyvideo/

http://www.cs.columbia.edu/~vondrick/tinyvideo/
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Table 4. Experiment results on the Beach dataset by MSE, PSNR, and SSIM.

Method MSE↓ PSNR↑ SSIM↑
RNN-GAN 0.1849 7.7988 0.5143
VGAN 0.0958 11.5586 0.6035
MD-GAN Stage II 0.0422 16.1951 0.8019
Ours (a) 0.0379 23.6601 0.7320
Ours (b) 0.0374 25.6432 0.7346

5.3 Experiments on the Beach Dataset

In this section, we compare our model with MD-GAN, VGAN, and RNN-GAN [33]
using the beach dataset in a quantitative evaluation. All models generate 32 fu-
ture frames and are trained using the adversarial loss. VGAN and RNN-GAN
take an image of 64 × 64 resolution and predict future frames of 64 × 64 res-
olution. In addition, MD-GAN takes also the same resolution image to satisfy
these conditions. Therefore, for a fair comparison, our model is also adjusted
to learning with a 64 × 64 resolution image. To learn this model, our model
was removed the first convolutional and deconvolutional layer so that model can
predict future frames of resolution 64 × 64. All models calculate MSE, PSNR,
and SSIM using randomly sampled 1000 videos from the evaluation dataset. As
shown in Table 4, our model showed the better scores than the other models
regarding PSNR an MSE, although the MD-GAN Stage II achieved the best
score in SSIM.

5.4 Discussion

We conduct ablation studies to verify the important role of the parameter
gamma in Eq 3. The parameter gamma is initialized to 0 and is the weight
of the spatial self-attention module. Figure 4 shows the difference of the pre-
diction result by (A) existence (B) non existence of gamma parameter for per-
forming qualitative evaluation. In many cases, Method (B) fails to learn motion
generation as the red arrows in Figure 4. The issue is because the spatial self-
attention module is affected by over-weighting the entire image. Thus, although
the generator generates images with quality that can fool the discriminator, it
fails to capture the movement of the cloud. Method (A) overcomes this problem
by adjusting the influence while learning the overall weight of our module.

6 Conclusion

We propose SSA-GAN with the spatial self-attention mechanism based on the
self-attention. The spatial self-attention mechanism enables the models to rep-
resent features of real samples. In addition, the mechanism makes it possible to
learn models efficiently in the one-stage of end-to-end learning. We demonstrate
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Fig. 4. Some example results of cloud motions generated by our proposed model.
From left to right: (a) the ground truth, (A) existence, (B) non existence of gamma
parameter in Eq 3, respectively. The red arrow shows an example of failing to capture
the movement of the cloud.

that our model achieves comparable results with the state-of-the-art method
which performs a two-stage learning and predict future frames as realistically as
possible.

However, our proposed model fails to generate cloud motion as much as
ground truth video. In the future, we use temporal features to learn the model
that can reproduce time-lapse video. More experimental results including gener-
ated videos can be seen at https://udonda.github.io/ACPR 44 supplementary
material/.
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