Pop’n Food: 3D Food Model Estimation System
from a Single Image

Shu Naritomi

Keiji Yanai

Department of Informatics, The University of Electro-Communications, Tokyo, Japan
{naritomi-s, yanai}@mm.inf.uec.ac.jp

Abstract—Dietary calorie management has been an important
topic in recent years, and various methods and applications
on image-based food calorie estimation have been published in
the multimedia community. Most of the existing methods of
estimating food calorie amounts use 2D-based image recognition.
However, since actual food is a 3D object, there is a limit
to the accuracy of calorie estimation using 2D-based methods.
Therefore, in our previous work,we proposed a method to
reconstruct the 3D shape of the dish (food and plate) and a
plate (without foods) from a single 2D image and estimate a
more accurate food volume. Such researches on 3D reconstruction
have been active recently, and it is necessary to qualitatively
evaluate what Kkind of 3D shape has been reconstructed. However,
checking a large number of 3D models reconstructed from a large
number of images requires many steps and is tedious. Against this
background, this demo paper introduces an application named
“Pop’n Food” which has the following two functions: (1) A web
application for visualizing a large number of images to check
the learning results and the 3D model generated from them. (2)
A web application that selects an image from a browser and
generates and visualizes a 3D model in real-time. This demo
system is based on our previous work named Hungry Networks.
Demo video: https://youtu.be/YyIu8bL65EE

Index Terms—Food, 3D reconstruction, web application, We-
bGL

I. INTRODUCTION

Dietary calorie management has been an important topic in
recent years, and various methods and applications on image-
based food calorie estimation have been published in the multi-
media community. Most of the existing methods of estimating
food calorie amounts use 2D-based image recognition [1], [2],
[3], [4], [5], [6]. However, since actual foods are 3D objects,
the accuracy of calorie estimation using 2D-based methods is
limited. 3D-based methods have been explored so far as well.
Some works tried to estimate the 3D volume of foods from a
single image using depth estimation [7], [8] or using a depth
camera [9], [10]. These studies had restrictions such as the
requirement for a depth camera and the need for food to be
on a flat plate. On the other hand, in our previous work [11],
we have achieved a highly accurate 3D reconstruction of a dish
(food and plate) and a dish (without foods) from a single dish
RGB image for more accurate volume estimation. This method
allows us to maintain the consistency of the dish portion of
the estimated meal and dish 3D Volume. The difference in
volume between the two shapes of dish and plate reveals

Hungry
Networks

Reconstruct
3D volume

Fig. 1. User interface of “Pop’n Food”. left is input image and right is 3D
view.

the volume of the food area, which is useful for estimating
calorie content. Again, the method proposed in the previous
study generated two 3D models from a single image. So, the
qualitative evaluation is a very hard task. We explain how
hard it is to do. Generally, to see a 3D model, software tools
for visualizing and editing 3D models such as Blender and
MeshLab are used. These applications read local files, so if
deep neural networks are executed on a pubic cloud or remote
machine, we will need to download 3D models to the local
machine. Downloading a large number of 3D models to the
local machine can be very time-consuming. Next, we enter
the 3D model into the 3D model visualization tool, but we
have to check each time from which image the 3D model
was generated. Also, the Hungry Networks proposed in our
previous work is even harder because it generates two 3D
models. What we want to do is see what 3D models a network
produces from the images. We do not want to download or
check the correspondence between 3D models and images.
Therefore, we created a web application named “Pop’n Food”
that displays an image list on a web browser and allows us to
view two 3D models at the same time by clicking the button
corresponding to the image. The UI looks like Figure 1.

This application eliminates the need to hang out in front
of a computer to download a large number of models, or to
have human check the correspondence between images and
3D models. The main use case of this application is to easily
view the results of 3D models that have been reconstructed
with the evaluation data set using a method that achieves 3D

reconstruction in advance. However, there is also a need to
generate and check 3D models using images other than those
in the evaluation dataset, so we also created a model that
generates and displays two 3D models in a real-time way using
images as input from a browser.

In this paper, we first introduce our previous research,
Hungry networks, which reconstructs the 3D shape of dish
and plate from a single image. Next, we will explain a system
named “Pop’n Food” that generates a 3D model using Hungry
networks from a single image in real-time and visualizes the
generated 3D model.

II. HUNGRY NETWORKS

The Hungry Network is a deep neural network that re-
constructs two 3D shapes of a dish (food and plate) and a
plate (without foods) from a single food image. The network
consists of one encoder and two decoders as shown in Figure
2. The encoder takes an image as input and extracts image
features. The decoder takes the image features and the co-
ordinates x € R3 as input and outputs occupancy o € R.
The occupancy indicates whether the coordinate x € R3 is
inside or outside the model. It is 1 if it is inside the model
and O if it is outside. Of the two decoders, one is trained
to output occupancy to generate a model of the dish. The
other decoder is trained to output occupancy to reconstruct
only the plate. The training of occupancy takes as input a
non-discretized (continuous) coordinate x, so it is possible
to create 3D models with infinite resolution (in practice a
resolution of 128x128x128 is sufficient). From the resulting
occupancy filed, a 3D mesh is generated using a marching
cube [12]. The algorithm based on Occupancy Networks [13]
for extracting mesh is as follows. First, we infer the occupancy
at the initial resolution of 32 x 32 x 32. Next, we infer
the occupancy again by increasing the resolution of only the
boundary of the object to be generated. Since we do not need
to compute anything other than the boundary surface, this can
be done quickly. In each iteration, we increase the resolution,
divide the grid into eight parts, and increase the resolution as
32 X 32 x 32 = 64 x 64 x 64 = 128 x 128 x 128.

The occupancy field obtained at high resolution is used as
the input of the Marching cubes algorithm, and the isosurface
is extracted as the mesh. Since this algorithm can always
generate a mesh that is watertight and has no self-intersection,
it is convenient to consider the volume of food.

A. Training Hungry Networks

We explain how to train the network. The loss function
used to train the network consists of three terms. The first is
a loss that learns the occupancy to represent the 3D volume
of the dish. The second is the loss to learn the occupancy to
represent the 3D volume of the plate, and the third is the loss
to match the shape of the plate part of the two 3D volumes
of the dish and the plate. Since occupancy is expressed as

Increase the resolution. (N times)

occupancy
probabilities Fyt=1¢e111):4
cubes

pointe R?

occupancy

decoderl probability € R

encoder

occupancy

CERE == ability € R

marching
cubes

pointe R3
occupancy
probabilities

®

Fig. 2. The overview of “Hungry Networks.”[11]

Increase the resolution. (N times)

TABLE I
PATTERNS OF OCCUPANCY

dish occupancy

(fa1(p))
0

late occupanc;
P (Fas (pp))) 4 faz2(p) — fa1(p)
0 0
1 0 -1
0 1 1
1 1 0

a real number between 0 and 1, it is equivalent to binary
classification. Therefore, we use BCE loss as shown in Eq.1.

Lo(fa(z,p);0(p)) = Luce(fa(z,p), 0(p)) (D

Here, p € R? is the input point and x is the feature of
an input image. f; is the decoder. Also, the occupancy rate
corresponding to the point p is expressed as o(p) € R. Next,
we introduce “plate consistency loss”, which is a loss function
for matching the plate parts of the two 3D volumes output.
This is because if this loss function is not included, the plate
shapes of the two output 3D volumes will be different.

Table I shows the pattern of occupancy of Decoderl and
Decoder2. There is no problem if the same point p is used as
input and the inferred occupancy is the same. The condition
where the occupancy of a dish is 1 and the occupancy of a
plate is O is not a problem because it corresponds to the food
part of the dish model. However, when the occupancy rate
of the dish is 0 and the occupancy rate of the plate is 1, it
means that the plate parts of the 3D volume of the dish and
the plate do not match, which is problematic. Therefore, we
solve this problem by introducing the following loss. As can
be seen from the table, we use the fact that fy2(p) — fa1(p) is
greater than O only when the occupancy of the meal is 0 and
the occupancy of the tableware is 1.

Le(far(p), faz(p)) = max(fa2(p) — far(p) ,0) (2)

The above two formulas (Eq.1, Eq.2) are put together
to determine the loss Lp for each mini-batch of the entire
learning. Here, B is the sampled mini-batch, I; is the ¢-th
image of the batch, and K points in total from the ¢-th batch

are sampled, and p; ; represents the sampled j-th point of
the i-th image. It is assumed that f. is the encoder that output
image features, and f4; and fgo are decoder outputs that output
food and plate occupancy rates, respectively.

ry = fe(Iy) 3)
yli; fair(zi,pij) 4
Y2 5 faz2 (i, pij))
1 Bl K
Lp= B Z Z <)\1£O(ylz‘,j; 0li(pij))
i=1 j=1

+ A2 Lo (y2i,5,02i(pi ;)
+ AsLe(yli 5, y2i,j)> (6)

B. Training Results

We created our dataset containing 3D models of dish
and plate and used it to train the network. The images for
training were created by rendering the 3D models. The non-
dish portions of the images were synthesized from various
background images. The reconstruction results of the network
trained on these datasets using the actual meal image as input
instead of the rendered image are shown in Figure 3. It can be
seen that even when the network was trained with rendered
images, it shows correct 3D reconstruction results with real
meal images as input.

III. Por’N FOOD

The user interface of the application is shown in Figure 5.
There is a list of images on the left and two canvases on the
right. The 3D model of the dish is displayed on the upper
side of the canvas, and the 3D model of the plate is displayed
on the lower side. By clicking the button next to the image,
the user can see the 3D model reconstructed from the clicked
image. In the works on 3D reconstruction, we often see videos
created from images of models rendered from different angles
and displayed in a browser. This application, on the other
hand, uses WebGL via a JavaScript library called three.js,
which allows users to interactively view the 3D model from all
angles. The application we created this time has two modes.
One is a mode to view a 3D model generated in advance
from the image of the data set for evaluation. The other is
a mode in which the user can input arbitrary images one by
one, generate a 3D model in real-time, and view it. Since
the mode in which the model is generated in advance omits
some functions of the real-time mode, the operation of the
real-time mode will be described here. The architecture for
generating 3D models in real-time is shown in Figure 4. First,
the user inputs the image into the browser. When the browser
loads the image, the image entered in the list of images is
displayed on the left side of the UIL. Each element of the list
of images has a button labeled “Generate 3D.” By clicking

Input Image Plate

1T

.

Fig. 3. Hungry Networks reconfiguration results.

this button, the image will be sent to the web server. When
the web server receives an input image, it throws the image to
the API Server equipped with GPU. On this API server, two
3D models of a dish and a plate are generated from the input
image using Hungry Networks [11]. After generating the 3D
model, the system saves it with the input image in the server-
side storage. At this time, a unique model ID such as GUID is
also generated at the same time so that the generated 3D model
can be searched from the unique model ID. The API Server
returns the generated unique model ID to the Web Server, and
the Web Server returns it to the browser side. Based on the
returned unique model ID, the browser requests the 3D model
from the web server, deserializes the 3D model returned as
a response and displays it using Three.js. This is the overall
flow of real-time mode. In the mode of viewing pre-generated
3D models in the evaluation dataset, a reconstructed 3D model

API Server

Web browser equipped with GPU

Click = @ Send Image ® D
button Return
GUID ode g
@ Fetch 3d object ® Return L -
vser \ 3d model
N

gish plate

®) Save 3D
model and
image

A
® Read
3D model

Three.js(WebGL)

dEE|

mount
same storage

Fig. 4. demo system overview

PyTorch

Dish 100% loaded!

Plate 100% loaded

Fig. 5. Web Interface. There is a list of images on the left and two canvases
on the right. The 3D model of the dish is displayed on the upper side of
the canvas, and the 3D model of the plate is displayed on the lower side.
By clicking the button next to the image, the user can see the 3D model
reconstructed from the clicked dish image. The 3D model is also rendered in
real-time, so you can interact with it (not a video).

e |

J -
B

and its associated unique model ID are generated in advance.
By embedding the unique model ID into html, the 3D model
can be easily displayed without a GPU-equipped API Server.
Introducing the libraries and frameworks used for imple-
mentation. On the browser side, Three.js and Vue.js are mainly
used. Three.js is a library for easily handling WebGL etc. with
JavaScript and easily creating 3D CG applications, and Vue.js
is a reactive JavaScript framework for creating UI. API Server
is implemented in Python, and Web Server is set up using
Flask. Flask is a micro web framework. Hungry Networks,
which runs internally, is implemented in PyTorch. The GPU
equipped in API Server is GTX 1060. By loading Hungry
Networks when the web server starts and deploying it on the
GPU, the response to the request is within about 2 seconds.

IV. CONCLUSION

In this paper, we introduced a system that can reconstruct
and visualize two 3D models of a dish and a plate from a single
dish image in a real-time way on a web browser. By utilizing
WebGL, this application enables users to interactively check
3D models. Thanks to such an application, even a generated
3D model can be reconstructed very easily, which is useful
for qualitative evaluation and so on.

Fig. 6. By clicking the 3D generation button next to the image, the user can
generate a 3D model in real-time by inputting an image other than the data set
for evaluation and see the result. The generation time per image is 2 seconds.

Acknowledgements: This work was supported by JSPS KAK-
ENHI Grant Number 17H06100.

REFERENCES

[1] T. Ege and K Yanai. Image-based food calorie estimation using recipe
information. IEICE Transactions on Information and Systems, E101-
D(5):1333-1341, 2018.

[2] T. Ege and K. Yanai. Imag-based food calorie estimation using
knowledge on food categories, ingredients and cooking directions. In
Proc. of ACM Multimedia Thematic Workshop, 2017.

[3] T. Ege and K. Yanai. Estimating food calories for multiple-dish food

photos. In Proc. of Asian Conference on Pattern Recognition, 2017.

T. Ege and K Yanai. Multi-task learning of dish detection and calorie

estimation. In Proc. of IJCAI and ECAI Workshop on Multimedia

Assisted Dietary Management, 2018.

S. Naritomi and K. Yanai. CalorieCaptorGlass: Food calorie estimation

based on actual size using hololens and deep learning. In Proc. of IEEE

Conference on Virtual Reality and 3D User Interfaces, 2020.

[6] R. Tanno, T. Ege, and K. Yanai. AR DeepCalorieCam V2: food calorie
estimation with cnn and ar-based actual size estimation. In Proc. of
the 24th ACM Symposium on Virtual Reality Software and Technology,
pages 1-2, 2018.

[71 A. Meyers, N. Johnston, V. Rathod, A. Korattikara, A. Gorban, N. Sil-
berman, S. Guadarrama, G. Papandreou, J. Huang, and K. P. Murphy.
Im2Calories: towards an automated mobile vision food diary. In Proc.
of the IEEE International Conference on Computer Vision, pages 1233—
1241, 2015.

[8]1 Y. Lu, D. Allegra, M. Anthimopoulos, F. Stanco, G. M. Farinella, and
S. Mougiakakou. A multi-task learning approach for meal assessment.
In Proc. of the Joint Workshop on Multimedia for Cooking and Eating
Activities and Multimedia Assisted Dietary Management, pages 4652,
2018.

[91 Y. Ando, T. Ege, J. Cho, and K. Yanai. DepthCalorieCam: A mobile

application for volume-based foodcalorie estimation using depth cam-

eras. In Proc. of the 5th International Workshop on Multimedia Assisted

Dietary Management, pages 76-81, 2019.

F.P.. Lo, Y. Sun, J. Qiu, and B. P. L. Lo. Point2volume: A vision-based

dietary assessment approach using view synthesis. IEEE Transactions

on Industrial Informatics, 16(1):577-586, 2020.

S. Naritomi and K Yanai. Hungry networks: 3d mesh reconstruction of

a dish and a plate from a single dish image for estimating food volume.

In Proc. of ACM Multimedia Asia, 2020.

W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution

3d surface construction algorithm. ACM siggraph computer graphics,

21(4):163-169, 1987.

[13] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger.
Occupancy Networks: Learning 3d reconstruction in function space. In
Proc. of IEEE Computer Vision and Pattern Recognition, pages 4460—
4470, 2019.

[4

=

[5

[ty

(10]

[11]

[12]

