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Introduction

• Neural style transfer have shown impressive 
results in deep learning.

• Recent researches have successfully completed 
the transition from the text font domain.
to the text style domain.
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Image Style Transfer Using Convolutional Neural 

Networks [Gatys, CVPR 2016]

Controllable Artistic Text Style Transfer via 

Shape-Matching GAN [Yang, CVPR2019]
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Introduction

• However, for text style transfer, multiple style 
transfer often requires learning many models.

• Generating multiple styles images of texts in a 
single model remains an unsolved problem.
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Introduction

• We propose a multiple style transformation 
network, which can generate multiple styles of 
text images in a single model and control the 
style of texts in a simple way.

4

＋ ?
.
.
.



ⓒ 2021 UEC Tokyo.

• The existing researches (Neural image style 
transfer,AdaIN) related to style transformation 
of images have made very significant progress.
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Related work
1. Style Transfer 

cited from adain[CVPR,2017]
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Related work
2.Image-to-image translation
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cited from SPADE[Park et al.,CVPR2019]

• SPADE [7] allows users to create an actual 
composite image from a simple image drawn 
by the user.

• Proposes a new normalization layer Spatially-
Adaptive Normalization.
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Related work

7
cited from SEAN[Zhu, CVPR 2020]

• SEAN [18] made improvements for SPADE [7]. 
Individual control of each region of a semantic 
segmentation image was achieved.
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Related work
3. Text font style transfer

• Can transform text styles by learning one 
style image and can control different degrees 
of style.
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cited from Shape-Matching GAN [Yang，CVPR2019]
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Shape-Matching GAN
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from Controllable Artistic Text Style Transfer via Shape-Matching GAN [Yang, CVPR2019]

• Base method Shape-Matching GAN.

• Stage 1:sketch module is used to change the 
style images into different degrees of 
deformation through the parameter l.
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Shape-Matching GAN
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cited from Controllable Artistic Text Style Transfer via Shape-Matching GAN [Yang, 
CVPR2019]

• Base method Shape-Matching GAN.

• Stage 2: there are two main parts,structure
module (GS,DS) and texture module (GT,DT). 
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Shape-Matching GAN

• Network requires only one style image for text 
style transformation.

• Shape-Matching GAN works well when 
learning just one style, but it does not work 
when learning multiple styles.

• multiple styles of text can not be generated 
with only one model.
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Proposed method

• we propose a multiple style transformation 
network for text style transfer based on Shape 
matchingGAN.

• our main idea:

1.add conditions.

2.optimize the network.
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• The red line shows the network structure that we have
changed for Shape-MatchingGAN.

Proposed method
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• Conditional input.

Conditional input
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1.put the mask
images as conditions
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Conditional input

• Input into the network in pairs with the style
images.
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fire：green feather:purple smoke:red water:yellow

Sketch
module

GB
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Multi-style training

• SPADE layer can effectively prevent the 
information about mask images from being 
washed out in the network.
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SPADE[Park et al.,CVPR2019]
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• Implemented the SPADE layer in Shape-Matching 
GAN.

Multi-style training
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2.implemented the 
SPADE layer
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Multi-style training

• The mask of the four kinds of the style images 
is used as input for SPADE ResBlk.
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SPADE
ResBlk

SPADE
ResBlk
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• Add a discriminator to make the quality of the 
generated images better.

Improving the quality of the 
generated images
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add patch 
discriminator
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Improving the quality of the 
generated images

• Add a PatchGAN discriminator to our texture 
network.
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＋ Dpatch

Generated 

results



ⓒ 2021 UEC Tokyo.

Dataset

• Dataset: 129 text images, 4 style images and 
corresponding mask images.
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Example of text image Style image and mask image
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Network training

• Training process: input the style images and 
the corresponding mask images into the 
network in pairs.

• Testing stage:  input the selected text image 
and style mask image to generate the
corresponding style text image.
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Results of the experiments
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Results of the experiments
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Results of the ablation study

Remove a part of the proposed method.
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input style              w/o  SPADE       w/o Dpatch          full model 
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User study
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Baseline vs  Multi-style SMGAN
Number of votes
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Conclusions

• In this study, we proposed a multi-style transfer 
network for text. 

• We can also control the generation of various styles 
of text images in the generation stage.

• The results show that we have achieved a good effect 
on the generated style images based on the effective 
transformation of multiple text styles.
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