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Introduction

* Neural style transfer have shown impressive
results in deep learning.

* Recent researches have successfully completed
the transition from the text font domain.

to the text style domain.

Controllable Artistic Text Style Transfer via

image Style Transfer Using Convolutional Neural
Shape-Matching GAN [Yang, CVPR2019]

Networks [Gatys, CVPR 2016]
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Introduction

 However, for text style transfer, multiple style
transfer often requires learning many models.

* Generating multiple styles images of texts in a
single model remains an unsolved problem.
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Introduction

 We propose a multiple style transformation
network, which can generate multiple styles of
text images in a single model and control the
style of texts in a simple way.
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Related work
1. Style Transfer

* The existing researches (Neural image style
transfer,AdalN) related to style transformation
of images have made very 5|gn|f|cant progress.

cited from adam[CVPR 2017]
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Related work
2.Image-to-image translation

 SPADE [7] allows users to create an actual

composite image from a simple image drawn
by the user.

* Proposes a new nhormalization layer Spatially-
Adaptlve Normalization.
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C|ted from SPADE[Park et al.,CVPR2019]
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Related work

 SEAN [18] made improvements for SPADE [7].
Individual control of each region of a semantic
segmentation image was achieved.

Source Image |

»- ~

cited from SEAN[Zhu, CVPR 2020]
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Related work
3. Text font style transfer

e Can transform text styles by learning one
style image and can control different degrees
of style.

cited from Shape-Matching GAN [Yang, CVPR2019]
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Shape-Matching GAN

* Base method Shape-Matching GAN.

e Stage 1:sketch module is used to change the
style images into different degrees of
deformation through the parameter |.

Stage I: Input Preprocessing (Backward Structure Transfer)

matting { —>»| Sketch cropping
»| Module - , /
Gg
X, X y

Input Y Structure X Sketchy structure }}E

from Controllable Artistic Text Style Transfer via Shape-Matching GAN [Yang, CVPR2019]
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Shape-Matching GAN

Base method Shape-Matching GAN.

e Stage 2: there are two main parts,structure
module (GS,DS) and texture module (GT,DT).

Stage II: Forward Style (Structure and Texture) Transfer

\/
= Glyph

cited from Controllable Artistic Text Style Transfer via Shape-Matching GAN [Yang

CVPR2019
J © 2021 UEC Tokyo. 10



Shape-Matching GAN

 Network requires only one style image for text
style transformation.

* Shape-Matching GAN works well when
learning just one style, but it does not work

when learning multiple styles.

* multiple styles of text can not be generated
with only one model.

(© 2021 UEC Tokyo.



Proposed method

* we propose a multiple style transformation
network for text style transfer based on Shape
matchingGAN.

e our main idea:
1.add conditions.
2.0ptimize the network.

(© 2021 UEC Tokyo.
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Proposed method

e The red line shows the network structure that we have
changed for Shape-MatchingGAN.
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Conditional input

[ J
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Conditional input

* Input into the network in pairs with the style
Images.

fire:green feather purple smoke red water:yellow

Croppmg b’
X, X

Sketchy structure X
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Multi-style training

* SPADE layer can effectively prevent the
information about mask images from being
washed out in the network.
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Multi-style training

« Implemented the SPADE layer Ip _Matching
GAN 2.implemented the
o \ SPADE layer

mask images mask images

Training < mask images
C

STAGEN

Test < Gt
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Multi-style training

* The mask of the four kinds of the style images
is used as input for SPADE ResBIk.

e

SPADE SPADE
ResBIlk ResBIlk

. s radv
=
" i Bl i
0 < > LS

© 2021 UEC Tokyo. 18



(R EIATEA
L BRUBEAS

Improving the quality of the
generated images

* Add a discriminator to make the quality of the
generated images better.
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Improving the quality of the
generated images

e Add a PatchGAN discriminator to our texture
network. ‘4

Generated
results

© 2021 UEC Tokyo. 20



—~ EEAA

UEC m5imisksy

Dataset

* Dataset: 129 text images, 4 style images and
corresponding mask images.

Example of text image Style image and mask image
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Network training

* Training process: input the style images and
the corresponding mask images into the
network in pairs.

* Testing stage: input the selected text image
and style mask image to generate the
corresponding style text image.
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Results of the experiments

Shape
Style Transfer Adaln MatchingGAN ours
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Results of the experiments

(© 2021 UEC Tokyo.



—~ EEAA

UEC &omis iy

Results of the ablation study

Remove a part of the proposed method.

input style w/o SPADE w/o Dpatch full model
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User study

Baseline vs Multi-style SMGAN

Number of votes
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Conclusions

* In this study, we proposed a multi-style transfer
network for text.

 We can also control the generation of various styles
of text images in the generation stage.

* The results show that we have achieved a good effect
on the generated style images based on the effective
transformation of multiple text styles.
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