|
$B0lHL2hA|G'<1$N
1 $BGX7J(B
$B0lHLJ*BNG'<1(B[1]$B$N8&5f$H$O!$FCDj$N@)Ls$N$J$$]$N2hA|$G$bMM!9$J(B
$B>uBV$N$b$N$,B8:_$9$k!%$7$+$7!$8=:_$N0lHLJ*BNG'<1$N8&5f$G$O2hA|$N
2 $B8&5fL\E*(B
$BK\8&5f$NL\E*$O!$0lHLJ*BNG'<1$N$?$a$N(B1000$Be$N5pBg2hA|CN<1%G!<(B
$B%?%Y!<%9$r9=C[$9$k$3$H$G$"$k!%$=$N$?$a$K!$8=:_Ev8&5f<<$G$O(B1000$Be$N2hA|%G!<%?$,$"$k$,!$$=$N@:EY$O(B $BDxEY$G$"$k!%$^$?!$$=$N3F%3%s%;%W%H(B
$B$K$*$$$F?M
$BK\8&5f$G$O!$(B100$B2A$7!$MxMQ2ACM$N9b$$%G!<%?%Y!<%9$N9=C[(B
$B$rL\;X$9!%(B
3 $B2hA|G'<1$NJ}K!(B
$B3F%3%s%;%W%HFb$N?M$N%3%s%;%W%H$N@52r(B
$B2hA|$+$i%i%s%@%`$K
$BFCD'NL$K$O!$6I=jFCD'$N(BSIFT(Scale Inbariant Feature Transform)$BFCD'(B
[2]$B$r;HMQ$9$k!%FCD'NL$H$7(B
$B$F6I=jFCD'$rMQ$$$k>l9g!$BgNL$NFCD'E@$r=hM}$9$k$?$a!$(Bbag-of-keypoints$B3]$B$rMQ$$$F2hA|$r0l$D$NFCD'%Y%/%H%k$H$7$FI=8=$9$k!%J,N`4o$K$O!$(B
SVM(Support Vector Machine)[4]
$B$H(BpLSA(Probabilistic Latent Semantic Analysis)[5]$B$rMQ$$$F!$@52r3X=,2hA|$H$NN`;wEY(B
$B$r7W;;$9$k!%(B
3.1 Bag-of-keypoints$B
$B6I=jFCD'%Q%?!<%s$N=P8=IQEY(B($B%R%9%H%0%i%`(B)$B$K$h$C$F!$2hA|$rI=8=$9$kJ}K!$G$"(B
$B$k!%3F2hA|$+$iB??t$NFCD'E@$rCj=P$7!$3FE@$N6I=j2hA|%Q%?!<%s$r(BSIFT$BK!$G(B128
$B
3.1.0.1 SIFT$BFCD'(B
SIFT$BFCD'$H$O!$FCD'E@<~$j$N6I=j2hA|%Q%?!<%s$r(B128$B!$%9%1!<%kJQ2=!$>HL@JQ2=$KIT(B
$BJQ$JFCD'NL$G$"$k!%K\8&5f$G$O3J;RE@FCD'Cj=P$H%i%s%@%`E@FCD'Cj=P$N(B2$B$D$NFC(B
$BD'E@Cj=PK!$rMQ$$$F!$(BSIFT$BFCD'$r
3.2 $BJ,N`J}K!(B
3.2.0.1 SVM
SVM$B$O4pK\E*$K(B2$B$D$N%/%i%9$r<1JL$9$kJ,N`4o$r9=@.$9$k$?$a$N3X=,K!$G$"$j!$K\(B
$B8&5f$G$O(B
[6]$B$rMQ$$$F!$3X=,2hA|$+$iCj=P$7$?(B
$BFCD'NL$+$i3X=,%b%G%k$r@8@.$7!$$=$N3X=,%b%G%k$r85$K
3.2.0.2 pLSA
pLSA$B$OE}7W%F%-%9%HJ88%=hM}$+$iH/@8$9$k%b%G%k$G!$3F2hA|$r@x:_%H%T%C%/$N:.(B
$B@.$H$7$FI=8=$9$k$l$N2hA|$K$*$1$k(B
$B3F%3%s%;%W%H$X$N5"B03NN((B($BN`;wEY(B)$B$r;;=P$9$k!%J8=q(B
$B$K(B
$B$*$1$kC18l(B
$B$NH/@8(B
$B3NN($r!$@x:_%H%T%C%/(B
$B$rMQ$$$k$H0J2<$N<0$GI=$5$l$k!%(B
 |
(1) |
$BK\8&5f$G$O!$3X=,%G!<%?$+$i(BpLSA$B$rMQ$$$FF@$i$l$?(B
$B$rMQ$$$F!$(B
$B3F%H%T%C%/(B $B$K5"B0$7$?$b$N$,@52r2hA|$G$"$k3NN((B
$B$r7W;;$9(B
$B$k!%$^$?!$(B
hold-in heuristics[5]$B$N
$B$r5a$a$k!%$3$l$i$NCM$rMQ$$$F!$2hA|(B $B$N@52r(B
$B3NN((B
$B$r7W;;$9$k$H0J2<$N<0$G$"$i$o$5$l$k!%(B
 |
(2) |
$BK\8&5f$G$O!$@x:_%H%T%C%/$N?t$r(B
$B$N(B3$BDL$j$NCM$rMQ$$$F
4 $B
4.1 $B%G!<%?%;%C%H(B
$BK\8&5f$G$O!$2hA|%G!<%?%;%C%H$H$7$FEv8&5f<<$G(BWWW$B$+$i<+F0<}=8$7$?2hA|$r;H(B
$BMQ$9$k!%$3$3$G$O!$r7o$H$7$F%3%s%;%W%HFb$N<}=8(B
$B2hA|Kg?t$,(B1000$BKg0J>e$"$j!$I>2A:QKg?t$,(B45$BKg0J>e$"$k(B100$B]$H$7$F$$$k!%(B
$B$3$N(B100$B$B$G$"$k!%(B
$BBP>]%3%s%;%W%H$rI=(B1$B$K!$$=$NCf$N(B20$B2A:Q$_@52r2hA|$NNc$r?^(B1$B$K<($9!%(B
$BI=(B 1:
100$B]%G!<%?(B
No. |
$BC18l(B
|
No. |
$BC18l(B
|
No. |
$BC18l(B
|
No. |
$BC18l(B |
1 |
$B8P(B |
26 |
$BJh(B |
51 |
$BBgJ)(B |
76 |
$BF~3X<0(B |
2 |
$B%@%`(B |
27 |
$BF0J*1`(B |
52 |
$B$&$J$.(B |
77 |
$B<7M<(B |
3 |
$BC+(B |
28 |
$B?eB24[(B |
53 |
$B%+%K(B |
78 |
$B3$?eMa(B |
4 |
$B;3(B |
29 |
$B5e>l(B |
54 |
$B$_$+$s(B |
79 |
$B2V2P(B |
5 |
$B5V(B |
30 |
$B6%GO>l(B |
55 |
$B3A(B |
80 |
$B?@MA(B |
6 |
$B:d(B |
31 |
$BD;5o(B |
56 |
$B$5$L$-$&$I$s(B |
81 |
$B2;3Z2q(B |
7 |
$B2P8}(B |
32 |
$B20Bf(B |
57 |
$B%i!<%a%s(B |
82 |
$BMY$j(B |
8 |
$B?9(B |
33 |
$B8$(B |
58 |
$B%-%c%Y%D(B |
83 |
$B7uF;(B |
9 |
$BEg(B |
34 |
$B%-%D%M(B |
59 |
$B$[$&$l$sAp(B |
84 |
$BAjKP(B |
10 |
$B%S!<%A(B |
35 |
$B>](B |
60 |
$B%H%^%H(B |
85 |
$B%i%0%S!<(B |
11 |
$B5y9A(B |
36 |
$B%Q%s%@(B |
61 |
$BDGB{(B |
86 |
$B%^%i%=%s(B |
12 |
$BN.I9(B |
37 |
$BD;(B |
62 |
$B$7$c$V$7$c$V(B |
87 |
$B%G%9%/(B |
13 |
$B>aF}F6(B |
38 |
$B%M%:%_(B |
63 |
$B%9%F!<%-(B |
88 |
$BBS(B |
14 |
$BKR>l(B |
39 |
$B%/%8%i(B |
64 |
$B>FCq(B |
89 |
$B5m(B |
15 |
$BAR8K(B |
40 |
$B5{(B |
65 |
$B9HCc(B |
90 |
$B5o |
16 |
$BO*E7IwO$(B |
41 |
$B:y(B |
66 |
$B%8%e!<%9(B |
91 |
$B%Z%s(B |
17 |
$B%[!<%k(B |
42 |
$B9HMU(B |
67 |
$B%3!<%i(B |
92 |
$B4$(B |
18 |
$B66(B |
43 |
$B6d0I(B |
68 |
$B%U%'%j!<(B |
93 |
$BMv(B |
19 |
$B$D$j66(B |
44 |
$B>>(B |
69 |
$B%8%'%C%H5!(B |
94 |
$BGO(B |
20 |
$BE4F;(B |
45 |
$B%^%s%0%m!<%V(B |
70 |
$B%T%"%N(B |
95 |
$B7$(B |
21 |
$BNSF;(B |
46 |
$B;gM[2V(B |
71 |
$BB@8](B |
96 |
$B0>(B |
22 |
$B;{(B |
47 |
$B%5%k%S%"(B |
72 |
$B%M%C%/%l%9(B |
97 |
$BAp2V(B |
23 |
$B?@ |
48 |
$B%_%s%H(B |
73 |
$B@c(B |
98 |
$BK_(B |
24 |
$B>k(B |
49 |
$B%5%s%4(B |
74 |
$B1@(B |
99 |
$B@Z |
25 |
$BE7 |
50 |
$BV"Iw(B |
75 |
$BM<7J(B |
100 |
$BED?"$((B |
4.2 $B
$BBP>]%3%s%;%W%H$NA42hA|$+$i(BSIFT$BFCD'$r3J;RE@!$%i%s%@%`E@$+$i$=$l$>$l
$BK\8&5f$G$O!$(B
$B2hA|$NFCD'E@Cj=PJ}K!$r3J;RE@!$%i%s%@%`E@$N(B2$BDL$j!$J,N`4o(B
$B$r(BSVM$B$H(BpLSA$B$N(B2$B
4.3 $BI>2AJ}K!(B
$BK\8&5f$G$O!$I>2AJ}K!$KL@3N$J5,B'$,$J$$$?$a?M2A$r9T$&I,MW$,$"$k!%$^(B
$B$?!$2A$r9T$&$3$H$O:$Fq(B
$B$G$"$k!%$=$N$?$a!$3F%3%s%;%W%H$K$*$1$k2A$r9T$$!$$=$N7k2L$r%3%s%;%W%HA4BN$NI>2A$H$7$FMxMQ$9$k%i(B
$B%s%@%`%5%s%W%j%s%0$N
$BJ,N`7k2L$NI>2A$KMQ$$$k4p=`$H$7$F!$E,9gN($GJ,N`%7%9%F%`$N@-G=$rI>2A$9$k!%(B
$B3F%3%s%;%W%H$K4^$^$l$k@52r2hA|$NKg?t$O!$%i%s%@%`%5%s%W%j%s%0$K$h$C$FF@$i(B
$B$l$?3:Ev%3%s%;%W%HA4BN$NE,9gN($rMQ$$$F5a$a$?!%(B
$B$3$3$G!$E,9gN($O
$BE,9gN((B |
(3) |
$BI>2A$O!$N`;wEY$N>e0L(B1000$B0L$G$NE,9gN($H!$3F%3%s%;%W%H$K4^$^$l$k@52r2hA|Kg(B
$B?t$G$NE,9gN((B
$B$r5a$a$?!%$^$?!$%3%s%;%W%HA4BN$G$N(B11$BE@J?6QE,9gN($b5a$aI>2A$r9T$C$?!%(B11$BE@(B
$BJ?6QE,9gN((B $B$O:F8=N(%l%Y%k(B
$B$K$*$1$kE,9g(B
$BN((B $B$r(B
$BMQ$$$F0J2<$N$h$&$K7W;;$9$k$3$H$,$G$-$k!%(B
 |
(4) |
4.4 $B
$B%i%s%@%`E@FCD'Cj=P$r9T$$!$(BSVM$B$rMQ$$$?>l9g$N7k2L$r<($9!%$3$3$G!$(B
$B?^(B2$B$O!V8$!W$N%3%s%;%W%H$K$*$1$k%i%s%/IU$1$r9T$C$?>e0L(B100$B0L(B
$B$H2<0L(B100$B0L$K4^$^$l(B
$B$k2hA|$NNc$G$"$k!%@D?'$O(BGOOD$B2hA|!$NP?'$O(BOK$B2hA|!$@V?'$O(BNG$B2hA|!$3%?'$OL$I>(B
$B2A2hA|$G$"$k!%(B
$BI=(B2$B$K!$N`;wEY$N>e0L(B1000$B0L$G$NE,9gN($NJ?6Q!$@52r2hA|Kg?t(B
$B$^$G$NE,(B
$B9gN($NJ?6Q!$(B11$BE@J?6QE,9gN($NJ?6Q$r<($9!%(B
$B0J>e$N7k2L$+$i!$%i%s%@%`E@FCD'Cj=P$rMQ$$$F!$(BSVM$B$GJ,N`$r9T$C$?>l9g$N7k2L$,(B
1000$B0L$^$G$NE,9gN($NJ?6Q!$@52r2hA|Kg?t$^$G$NE,9gN($NJ?6Q!$(B11$BE@J?6QE,9gN((B
$B$NJ?6Q$K$*$1$kCM$G!$:G$bNI$$7k2L$H$J$C$?!%$3$N7k2L$rMQ$$$F>e0L(B1000$B0L$^$G(B
$B$NE,9gN($+$i(B100$B$B$+$i!$(B $B%]%$%s%H$NA}2C$,$_$i$l$?!%(B
$B$^$?!$A4%3%s%;%W%H$KBP$7$F(BSVM$B$NJ}$,NI$$7k2L$H$J$C$?$o$1$G$O$J$/!$(B
$B?^(B3(a)$B$K<($9$h$&$K!$!VJh!W$G$O(BpLSA$B$G$NJ,N`7k2L$NJ}$,NI(B
$B$$7k2L$H$J$k>l9g$b$"$C$?!%(B
$B?^(B 2:
$B!V8$!W$G$NJ,N`7k2L$NNc(B($B%i%s%@%`E@(BSVM)
![\includegraphics[width=0.6\hsize]{eps/pos100-2.eps}](/research/student/mihara-k/research/resume-img24.png) |
![\includegraphics[width=0.4\hsize]{eps/neg100-2.eps}](/research/student/mihara-k/research/resume-img25.png) |
(a)$B%i%s%-%s%0>e0L(B |
(b)$B%i%s%-%s%02<0L(B |
|
$BI=(B 2:
$B3FJ,N`4o$K$*$1$kE,9gN($NJ?6QCM(B
|
$BFCD'E@(B |
1000$B0L$^$G$N(B |
$B@52r2hA|Kg?t$^$G$N(B |
11$BE@J?6QE,9gN((B |
$BJ,N` |
$BCj=P |
$BE,9gN($NJ?6Q(B(%) |
$BE,9gN($NJ?6Q(B(%) |
$B$NJ?6Q(B(%) |
SVM |
$B3J;RE@(B |
47.046 |
54.356 |
57.989 |
SVM |
$B%i%s%@%`(B |
47.511 |
55.104 |
58.748 |
pLSA(10) |
$B3J;RE@(B |
45.706 |
51.515 |
55.260 |
pLSA(30) |
$B3J;RE@(B |
46.377 |
52.897 |
56.814 |
pLSA(50) |
$B3J;RE@(B |
46.430 |
52.684 |
57.066 |
pLSA(10) |
$B%i%s%@%`(B |
43.636 |
47.679 |
51.597 |
pLSA(30) |
$B%i%s%@%`(B |
45.156 |
51.395 |
54.534 |
pLSA(50) |
$B%i%s%@%`(B |
46.137 |
51.863 |
56.058 |
$B?^(B 3:
SVM$B$H(BpLSA$B$NE,9gN($NHf3S(B
![\includegraphics[width=0.5\hsize]{eps/haka-result.eps}](/research/student/mihara-k/research/resume-img26.png) |
![\includegraphics[width=0.5\hsize]{eps/tomato-result.eps}](/research/student/mihara-k/research/resume-img27.png) |
(a)$B!VJh!W$N>l9g(B |
(b)$B!V%H%^%H!W$N>l9g(B |
|
5 $B9M;!(B
pLSA$B$G$NJ,N`$K$*$$$F!$@x:_%H%T%C%/?t$O;vA0$K7h$a$kI,MW$,$"$k!%$=$N$?$a!$(B
$BK\8&5f$G$O@x:_%H%T%C%/?t$r(B $B$N(B3$BDL$j$GJ,N`$r9T$C$?!%$=$N7k2L!$(B
$BI=(B2$B$+$i$o$+$k$h$&$K!$@x:_%H%T%C%/?t$,Bg$-$$J}$,7k2L$,(B
$BNI$$!%$7$+$7!$@x:_%H%T%C%/?t$,Bg$-$/$J$l$P$J$k$[$I!$J,N`$H4X78$N$J$$(B
$B%H%T%C%/$^$G$bG'<1BP>]$H$7$F$7$^$$!$@:EY$NDc2<$K$D$J$,$k62$l$,$"$k$?$a!$(B
$B$=$l$>$l$N%3%s%;%W%H$K$*$1$k:GE,$J@x:_%H%T%C%/?t$r5a$a$kI,MW$,$"$k$H(B
$B9M$($i$l$k!%(B
$B$^$?!$(BSVM$B$H(BpLSA$B$NJ,N`@:EY$rHf3S$7$?7k2L!$(BpLSA$B$h$j$b(BSVM$B$NJ}$,J,N`@:EY$N9b$$(B
$B>l9g$,B?$/!$(BSVM$B$,2hA|J,N`$K$*$$$FM-8z$J2$B$+$i8+$F
6 $B:#8e$N2]Bj(B
$B<}=8Kg?t$N>/$J$$%3%s%;%W%H$K4X$7$F!$$5$i$K2hA|<}=8$r9T$$8=%G!<%?(B
$B%;%C%H$r3HD%$7$F$$$/I,MW$,$"$k!%$^$?!$3F%3%s%;%W%H$K$*$1$kI>2A:Q(B
$B$_2hA|$K$D$$$F$b!$8=%G!<%?%;%C%H$G$O;wDL$C$?$b$N$P$+$j$G@52r2hA|%G!<%?$r9=@.(B
$B$7$F$$$k$b$N$,$"$C$?!%$=$N$?$a!$I>2A:Q$_2hA|$N:F9=C[$r9T$$!$B?MM@-$N$"$k@52r(B
$B2hA|%G!<%?$K$7$F$$$+$J$1$l$P$$$1$J$$!%(B
$B$^$?!$%^%k%A%/%i%9J,N`$r9T$&$3$H$G!$%3%s%;%W%H$NB?MM@-$K$D$$$F$b:#8eBP1~$7(B
$B$F$$$/$3$H$,=EMW$G$"$k$H9M$($i$l$k!%$=$N$?$a!$(B
$B:#2s7k2L$NNI$+$C$?(BSVM$B$@$1$rMQ$$$k$N$G$O!$%^%k%A%/%i%9J,N`$KE,$7$?J,N`Z$7$F$$$/I,MW$,$"$k!%(B
$BB>$K$b!$K\8&5f$G9=C[$7$?2hA|%G!<%?%Y!<%9$K$O%N%$%:$H$J$kIT@52r2hA|$,F~$C$F(B
$B$$$k$?$a!$%N%$%:2hA|$N=|5nJ}K!$K$D$$$F$b:#8e3NN)$7$F$$$/I,MW$,$"$k!%(B
$BJ88%L\O?(B
- 1
-
$BLx0f7<;J(B.
$B0lHLJ*BNG'<1$N8=>u$H:#8e(B.
$B>pJs=hM}3X2qO@J8;o(B: $B%3%s%T%e!<%?%S%8%g%s!&%$%a!<%8%a%G%#%"(B, Vol. 48,
No. SIG16 (CVIM19), pp. 1-24, 2007.
- 2
-
D. G. Lowe.
Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, Vol. 60, No. 2, pp.
91-110, 2004.
- 3
-
G. Csurka, C. Bray, C. Dance, and L. Fan.
Visual categorization with bags of keypoints.
In Proc. of ECCV Workshop on Statistical Learning in Computer
Vision, pp. 1-22, 2004.
- 4
-
N. Cristianini and J. Shawe-Taylor.
$B%5%]!<%H%Y%/%?!<%^%7%sF~Lg(B.
$B6&N)=PHG(B, 2005.
- 5
-
T. Hofmann.
Unsupervised Learning by Probabilistic Latent Semantic Analysis.
Machine Learning, Vol. 43, pp. 177-196, 2001.
- 6
-
Thorsten Joachims.
.
http://www.cs.cornell.edu/People/tj/svm_light/index.html.
|