|
$BJ#?tFCD'E}9g%U%l!<%`%o!<%/$K$h$k1GA|G'<1(B
$BEr(B $B;V1s(B
$BJ?@.(B21$BG/(B 2$B7n(B6$BF|(B
1 $B$O$8$a$K(B
$BCO>eGH%G%8%?%kJ|Aw$N3+;O$d!$(BHDD$B$d(BDVD$B$J$I$N%a%G%#%"$NIa5Z$*$h$Sl$H$H$b$K!$0lHL$N8D?M$,BgNL$N%G%8%?%k2hA|$dF02h%G!<%?$rC_@Q$9$k$3$H$,$G$-$k$h$&$K$J$C$?!%(B
$B0lJ}!$%G%8%?%k%G!<%?$NBgNL2=$H$H$b$K!$C_@Q$7$?BgNL$N%G!<%?$NCf$+$i!$1\Mw$7$?$$%G!<%?$rC5$7=P$9$3$H$,LdBj$H$J$C$F$$$k!%(B
$B$3$N>u67$KBP$7$F!$(BTRECVID$B$H8F$P$l$k6&DL%F%9%H%3%l%/%7%g%s$rMQ$$$?%S%G%*8!:w5;=Q$K4X$9$k8&5f3+H/B%?J$N$?$a$N9q:]%o!<%/%7%g%C%W$,3+:E$5$l$F$$$k!%(B
$BK\8&5f$G$O!$B?]35G0$NG'<1$r9T$C$?!%$^$?!$0lHL$N(BSVM$B$NBe$j$K!$J#?t$NFCD'%+!<%M%k$rE}(B
$B9g$9$k(BMKL SVM$B$b%U%l!<%`%o!<%/$KF3F~$7
2 TRECVID
TRECVID[1]$B$H$O!$%"%a%j%+$N9qN)I8=`5;=Q8&5f=j(BNIST(National Institute of Technology)$B$N8&5fItLg$,9T$&%F%-%9%H8!:w%o!<%/%7%g%C%W(BTREC(Text REtrieval Contest)$B$+$iGI@8$7$?%S%G%*1GA|8!:w%o!<%/%7%g%C%W$G$"$k!%KhG/6&DL$N%?%9%/$*$h$S3F%?%9%/$KBP$9$kI>2A4p=`$r@_Dj$7$F$$$k!%(B
$B:#G/3+:E$5$l$?(BTRECVID2008$B$O(B
- $B4F;k%$%Y%s%H8!=P(B(Surveillance event detection)
- $B9b
- $B8!:w(B(Search)
- $B%i%C%7%eMWLs(B(Rushes summarization)
- $BFbMF%Y!<%9%3%T!<8!=P(B(Content-based copy detection)
$B$N(B5$B$D$N%?%9%/$,MQ0U$5$l$F$$$k!%(B
$B3F%?%9%/$N
TRECVID2008$B$N9b
3 $B4XO"8&5f(B
IBM$B8&5f=j$N(BMilind$B$i(B[]$B$O(BTRECVID$B%o!<%/%7%g%C%W$N%5!<%Y%$O@J8$G!$(B
$B%S%G%*8!:w$dJ,N`$J$I$NJ,Ln$KBg$-$J2~A1$rM?$($k$3$H$r<($7$?!%$=$l0JMh!$(B
$BJ#?tFCD'E}9g$N8&5f$O6aG/@9$s$G9T$o$l$F$$$k!%(B
TRECVID2007$B$NBh(B1$B0L$N@62ZBg3X$O?'!$%F%/%9%A%c(B
$B!$%(%C%8$K4p$E$$$?(B26$B2]$B$O(BMKL$B$N3X=,J}K!$rDs0F$7!$(BXoford flower$B$d(B
Caltech101$B$J$I$N%G!<%?$KBP$7e$r2L$?$7$?!%(B
$B0J>e$N8&5f$rF'$^$(!$K\8&5f$G$b!$B?
4 $BJ#?tFCD'E}9g%U%l!<%`%o!<%/(B
$BK\8&5f$G$O!$B?1$B$N$h$&$K!$$^$:!$(BTRECVID2008$B$,Ds6!$7(B
$B$?1GA|$+$i@Z$j=P$5$l$?%-!<%U%l!<%`$KBP$7$F!$A4BN$H%0%j%C%IJ,3d5Z$S6I=jNN(B
$B0h$+$i!$?'!$6I=j%Q%?!<%s!$%F%-%9%H!$F0$-5Z$S4i$N(B5$B$l$NFCD'$r%b%G%j%s%0$7$F!$:G8e$K(BAdaboost[3]$B%"%k%4%j%:%`$r1~MQ$7!$(BSVM$B$N=PNO%b%G%k$rE}9g$9$k$3$H$K$h$C$F!$:G=*$NE}(B
$B9g7k2L$r=PNO$9$k!%$^$?!$0lHLE*$J(BSVM$B$NBe$j$K!$3FF~NOFCD'NL$r=E$_IU$-@~7A%+!<%M(B
$B%k$NOB$K$h$C$FE}9g$9$k(BMKL SVM(Multiple Kernel Learning SVM)$B$rF3F~$7!$D>@\G'<17k2L$r=PNO$9$k!%(B
5 $B2hA|FCD'NL(B
- $B?'FCD'(B$B!'(B
$B?'FCD'$H$7$F$O!$(B(1)$B%-!<%U%l!<%`2hA|$N(BRGB$B?'6u4V$N3F<4$r(B4$BJ,3d$7!$3FNN0h(B
$B$N2hAGCM$NIQEY$rI=8=$9$k(B64$B$l$N
- $B6I=j%Q%?!<%sFCD'(B$B!'(B
$B6I=j%Q%?!<%sFCD'$H$7$F$O!$(BSIFT$BFCD'$rMxMQ$9$k!%FCD'E@Cj=P%"%k%4%j%:%`$K$h$C$F!$FCD'E@$rCj=P$7!$$=$N<~0O$N%Q%?!<%s$r%3!<%I2=$9$k!%FCD'E@$K4X$7$F!$K\8&5f$O?^(B2$B$N$h$&$K!$(BDOG$B!$%i%s%@%`$H%0%j%C%I$N(B3$B$D$N3QEY$+$i8!=P$r9T$&!%6I=j%Q%?!<%s$rMQ$$$F2hA|$r%b%G%k2=$9$k$?$a$K!$(Bbag-of-keypoints$B
$B?^(B 2:
video indexing framework
|
- $B%F%-%9%HFCD'(B$B!'(B
TRECVID2008$B$,Ds6!$7$?2;@<%F%-%9%H%G!<%?$KBP$7$F!$(B
tf-idf$B%"%k%4%j%:%`$rE,MQ$9$k$3$H$K$h$C$FF@$i$l$?%o!<%I%Y%/%H%k$r;H(B
$BMQ$9$k!%(B
- $BF0$-FCD'(B$B!'(B
$B%-!<%U%l!<%`A08e(B0.5$BIC$N%*%W%F%#%+%k%U%m!<$r5a$a!$3Q(B
$BEY6u4V$r(B12$BJ,3d$7!$F0$-$NBg$-$5$GEjI<$7$FF@$i$l$?%R%9%H%0%i%`$rMxMQ(B
$B$9$k!%(B
- $B4iFCD'(B$B!'(B
$B%-!<%U%l!<%`2hA|$+$iCj=P$5$l$?4i$N?t$r;HMQ$9$k!%(B
- $B%F%/%9%A%cFCD'(B$B!'(B
6$BJ}8~!$(B4$B<~4|$N%,%\!<%k%U%#%k%?$rMQ$$$F@8@.$5(B
$B$l$?(B24$B
6 $BE}9g%"%k%4%j%:%`(B
6.1 $B%V!<%9%F%#%s%0(B
$B%V!<%9%F%#%s%0$OE}7WE*3X=,M}O@$NJ,Ln$K$*$$$F!$J#?t$No$K@-G=$,9b$$<1JL4o$r@8@.$9$k3X=,J}K!<0$G$"$k!%BeI=E*$J(BAdaboost $B$G(B
$B$O$"$k
$B:#2s$O(BSVM$B$N=PNO$rE}9g$9$k$?$a$K!$(BAdaBoost$B$rMQ$$$k!%DL>o$N(BAdaBoost$B$O%V!<(B
$B%9%F%#%s%0%i%&%s%I$4$H$K!$(BSVM$B$r:F3X=,$9$k$N$G!$7W;;%3%9%H$,Bg$-$$!$7k2L(B
$B$,IT0BDj$J$I$N7gE@$,B8:_$9$k!%K\8&5f$G$O!$%V!<%9%F%#(B
$B%s%0%i%&%s%I$4$H$K:F3X=,$7$J$$$G!$3X=,%G!<%?$N=E$_$N$_$r99?7$9$k(Breweight
$B<0$N(BAdaBoost$B2~NIHG$rDs0F$7!$%*%j%8%J%k$N(BAdaBoost$B$HN>J}
$B?^(B 3:
$B%V!<%9%F%#%s%0(B
|
6.2 AP weighted fusion
AP weighted fusion$B$O!$3X=,%G!<%?$rMQ$$$F!$3FFCD'$4$H$K(BAP($BJ?6QE,9gN((B)$B$r7W(B
$B;;$7!$(BAP$B$r=E$_$H$9$kE}9g%"%k%4%j%:%`$G$"$k!%K\8&5f$O%V!<%9%F%#%s%00J30!$(B
AP weighted fusion$B$b
7 MKL SVM
MKL$B$H$O!$J#?t$N(BSVM$B%+!<%M%k$r@~7A7k9g$9$k$H$-$K!$:GE,$J=E$_$r3X=,$9$k
8 $B
8.1 $B3X=,%G!<%?$H%F%9%H%G!<%?(B
$B
$B
8.2 $BI>2A;XI8(B
$B0lHLE*$K!">pJs8!:w$N7k2L$OE,9gN((B(precision)$B$GI>2A$5$l$k!%E,9gN($O@53N@-$N(B
$B<\EY$G!"
$B$=$7$F!$J?6QE,9gN($O!$CeL\$9$kKg?t$r(BN$B$H$7!$(B1$B!A(Bn$B0L$^$G$NE,9gN($r(B $B$H(B
$B$9$k$H!$(B
$B$GDj5A$9$k!%(B
$BK\8&5f$G$O!$7k2L$rI>2A$r9T$&:]$K$O!$(B $B!V?dDjJ?6QE,9gN((B(Inferred Average
Precision : infAP)$B!W$rMQ$$$k!%(BTRECVID2006$B$N%G!<%?NL$,KDBg$J$N$G!$I>2A$9$k(B
$B$H$-!$%i%s%@%`%5%s%W%j%s%0$G%F%9%H%G!<%?$NLsH>J,$7$+I>2A$r9T$o$J$$!%?dDjJ?(B
$B6QE,9gN($r;HMQ$9$k$H!$$h$j@53N$KI>2A$r9T$&$3$H$,$G$-$k!%(B
8.3 $B7k2L(B
$B
$B$=$l$>$l$NE}9gJ}K!$N$b$C$H$bNI$+$C$?7k2L$OI=(B1$B$K<($9!%(B
$BI=(B1$B$N3F9T$O(B20$B]$KBP$7$F!$(BAdaBoost$B$N2~NIHG!$(B
AdaBoost$B$N%*%j%8%J%k%P!<%8%g%s!$(BAP weighted fusion$B!$(BMKL SVM$B$K$h$kE}(B
$B9g7k2L$*$h$S(BTRECVID2008$B$N;22C%A!<%`$N7k2L(BinfAP$B$NJ?6QCM!$:G9bCM$r<($7$F$$$k!%0lHV2<$N9T$O3FNs$NJ?6Q$r<($7(B
$B$F$$$k!%K\
$BM}O@E*$K!$%*%j%8%J%k$N(BAdaBoost$B$O%i%&%s%I$4$H$K:F3X=,$9$k$N$G!$7k2L$,IT(B
$B0BDj$K$J$k2DG=@-$,9b$$!%$3$l$KBP$7$F!$Ds0F$7$?4JC1%P!<%8%g%s$OA4It$N3X(B
$B=,%G!<%?$r;HMQ$9$k$N$G!$7k2L$,0BDj$G$"$k!%$7$+$7!$K\8&5f$G
$BI=(B 1:
$B7k2L$NHf3S(B
concept fusion |
smpAda |
orgAda |
APw |
MKL |
median |
max |
|
01.Classroom |
0.0038 |
0.0015 |
0.0218 |
0.0239 |
0.008 |
0.152 |
|
02.Bridge |
0.0055 |
0.0123 |
0.0249 |
0.0175 |
0.004 |
0.117 |
|
03.E_Vehicle |
0.0017 |
0.0001 |
0.0062 |
0.0015 |
0.003 |
0.065 |
|
04.Dog |
0.0188 |
0.0145 |
0.1503 |
0.1192 |
0.067 |
0.271 |
|
05.Kitchen |
0.0053 |
0.0161 |
0.0523 |
0.0389 |
0.010 |
0.165 |
|
06.Airplane_fly |
0.0301 |
0.0161 |
0.0255 |
0.0181 |
0.029 |
0.278 |
|
07.Two people |
0.0385 |
0.0201 |
0.0495 |
0.0007 |
0.050 |
0.174 |
|
08.Bus |
0.0005 |
0.0007 |
0.0034 |
0.0032 |
0.004 |
0.119 |
|
09.Driver |
0.0232 |
0.0268 |
0.0731 |
0.0682 |
0.046 |
0.324 |
|
10.Cityscape |
0.0544 |
0.0803 |
0.1292 |
0.1138 |
0.059 |
0.258 |
|
11.Harbor |
0.0085 |
0.0080 |
0.0110 |
0.0155 |
0.007 |
0.182 |
|
12.Telephone |
0.0022 |
0.0023 |
0.0360 |
0.0168 |
0.011 |
0.136 |
|
13.Street |
0.0760 |
0.0808 |
0.1746 |
0.0001 |
0.112 |
0.413 |
|
14.Demonstr |
0.0126 |
0.0206 |
0.0502 |
0.0746 |
0.013 |
0.233 |
|
15.Hand |
0.0665 |
0.0779 |
0.2035 |
0.0012 |
0.092 |
0.377 |
|
16.Mountain |
0.0354 |
0.0401 |
0.0751 |
0.1154 |
0.042 |
0.246 |
|
17.Nighttime |
0.1004 |
0.1358 |
0.1511 |
0.1571 |
0.105 |
0.323 |
|
18.Boat_Ship |
0.1125 |
0.1017 |
0.1655 |
0.1330 |
0.093 |
0.394 |
|
19.Flower |
0.0887 |
0.0912 |
0.1116 |
0.1154 |
0.058 |
0.161 |
|
20.Singing |
0.0052 |
0.0168 |
0.0873 |
0.0211 |
0.013 |
0.258 |
|
mean |
0.0345 |
0.0382 |
0.0801 |
0.0528 |
0.043 |
0.233 |
|
9 $B:#8e$N2]Bj(B
$BK\e$r?^$k$3$H$O$b$&0l$D$N2]Bj$G$"$k!%(B
$BJ88%L\O?(B
- 1
-
TREC Video Retrieval Evaluation.
http://www-nlpir.nist.gov/projects/trecvid/.
- 2
-
M. Varma and D. Ray.
Learning The Discriminative Power-Invariance Trade-Off.
In Proc. of IEEE International Conference on Computer Vision,
pp. 1-8, 2008.
- 3
-
RE Schapire, Y. Freund, and RE Schapire.
Experiments with a New Boosting Algorithm.
In International Conference on Machine Learning, pp. 148-156,
1996.
|